CC Algebra II

Test #5 – Rational Exponents and Rational Functions - Review Sheet

**Regents Problems

August 2017 Regents Exam

1. The solution set for the equation $\sqrt{x + 14} - \sqrt{2x + 5} = 1$ is
 a. {-6}
 b. {2}
 c. {18}
 d. {2, 22}

2. What does $\left(\frac{-54x^9}{y^4} \right)^{2/3}$ equal?
 a. $\frac{9ix^{6\sqrt[4]{4}}}{y^3\sqrt[2]{y^2}}$
 b. $\frac{9ix^{6\sqrt[4]{4}}}{y^2\sqrt[4]{y^2}}$
 c. $\frac{9x^{6\sqrt[4]{4}}}{y^{\sqrt[2]{y}}}$
 d. $\frac{9x^{6\sqrt[4]{4}}}{y^2\sqrt[4]{y^2}}$

3. Explain how $(-8)^{4/3}$ can be evaluated using properties of rational exponents to result in an integer answer.

June 2017 Regents Exam

4. For $x \neq 0$, which expressions are equivalent to one divided by the sixth root of x?

 I. $\frac{6\sqrt[6]{x}}{\sqrt[6]{x}}$
 II. $\frac{x^{1/6}}{x^{1/3}}$
 III. $x^{-1/6}$

 a. I and II, only
 b. I and III, only
 c. II and III, only
 d. I, II, and III
5. Write $\sqrt[3]{x} \cdot \sqrt{x}$ as a single term with a rational exponent.

January 2017 Regents Exam

6. The expression $\left(\frac{m^2}{m^3}\right)^{-1/2}$ is equivalent to

 a. $-\sqrt[6]{m^5}$

 b. $\frac{1}{\sqrt[6]{m^5}}$

 c. $-m^{5\sqrt[6]{m}}$

 d. $\frac{1}{m^{5\sqrt[6]{m}}}$

7. Given the equal terms $\sqrt[3]{3^x} \cdot y^{5/6}$, determine and state y, in terms of x.

8. The speed of a tidal wave, s, in hundreds of miles per hour, can be modeled by the equation $s = \sqrt{t} - 2t + 6$, where t represents the time from its origin in hours.

 a. Algebraically determine the time when $s = 0$.

 b. How much faster was the tidal wave traveling after 1 hour than 3 hours, to the nearest mile per hour? Justify your answer.
7. \(\sqrt{2x+6} + 4 = x + 3 \)
 What is the solution set of the equation above?
 A) \{-1\}
 B) \{5\}
 C) \{-1, 5\}
 D) \{0, -1, 5\}

11. The expression \(\frac{x^2 \cdot y^3}{x^3 \cdot y^{-1}} \), where \(x > 1 \) and \(y > 1 \), is equivalent to which of the following?
 A) \(\frac{y}{y^2} \)
 B) \(\frac{y \cdot \sqrt{y}}{y^2} \)
 C) \(\frac{y \cdot \sqrt{y}}{x \cdot \sqrt{x}} \)
 D) \(\frac{y \cdot \sqrt{y}}{x^2 \cdot \sqrt{x}} \)

13. If \(a^{-\frac{1}{2}} = x \), where \(a > 0 \), what is \(a \) in terms of \(x \)?
 A) \(\sqrt{x} \)
 B) \(-\sqrt{x} \)
 C) \(\frac{1}{x^2} \)
 D) \(\frac{1}{x^2} \)

29. A motor powers a model car so that after starting from rest, the car travels \(s \) inches in \(t \) seconds, where \(s = 16t \sqrt{t} \). Which of the following gives the average speed of the car, in inches per second, over the first \(t \) seconds after it starts?
 A) \(4 \sqrt{t} \)
 B) \(16 \sqrt{t} \)
 C) \(\frac{16}{\sqrt{t}} \)
 D) \(16t \)
REGENTS Answers

1. ANS: B TOPIC: Solving Radicals
2. ANS: D TOPIC: Radicals and Rational Exponents
3. Rewrite $4/3$ as $\frac{1}{4} \cdot \frac{1}{4} = 1$, using the power of a power rule. TOPIC: Radicals and Rational Exponents
4. ANS: D TOPIC: Radicals and Rational Exponents
5. $x^{5/6}$ TOPIC: Operations with Radicals
6. ANS: B TOPIC: Radicals and Rational Exponents
7. $(x^{5/3})^{6/5} = (y^{5/6})^{6/5} \rightarrow x^2 = y$ TOPIC: Radicals and Rational Exponents
8. ANS:

$$
0 = \sqrt{t - 2t + 6} - 6 \left(\frac{9}{4} \right) - 6 < 0, \text{ so } \frac{9}{4} \text{ is extraneous.}
$$

$$
2t - 6 = \sqrt{t}
$$

$$
4t^2 - 24t + 36 = t
$$

$$
4t^2 - 25t + 36 = 0
$$

$$(4t - 9)(t - 4) = 0
$$

$$
t = \frac{9}{4}, 4
$$

$$
(\sqrt{1 - 2(1) + 6} - (\sqrt{3} - 2(3) + 6) = 5 - \sqrt{3} \approx 3.268 \text{ mph} \quad \text{TOPIC: Solving Radicals}
$$

SAT Answers

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7. B</td>
<td>11. D</td>
</tr>
</tbody>
</table>